Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407005

RESUMO

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.

2.
Foods ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38002144

RESUMO

Flaxseed is becoming increasingly popular as a superfood due to its many health benefits. While flaxseed is considered an oilseed, flaxseed meal (the by-product of flaxseed oil extraction) also contains many nutritional compounds not found in the oil. This study explored the use of a Canadian flaxseed (Linum usitatissimum L.) meal product to fortify bakery foods and improve their nutritional properties. Muffins were made using a control recipe as well as four different formulations that included varying amounts of a standardized flaxseed meal supplement called XanFlax (5, 10, 20, and 40%). The physicochemical properties of the muffins, including their texture, color, sugar content, pH, specific gravity, loss rate, and moisture, were evaluated. Additionally, the sensory attributes contributing to muffin quality were thoroughly examined. The lightness (L*) and yellowness (b*) of the muffins, which were highest in the control group at 82.22 and 34.69, respectively, decreased as the amount of XanFlax increased (p < 0.05). Additionally, the redness (a*) of the muffins increased as the amount of XanFlax increased (p < 0.05). The muffins' sugar content (2.00 brix%) remained consistent across all treatments and controls except for those prepared with 20% XanFlax (2.17 brix%). As the amount of XanFlax powder increased, the pH of the muffins increased significantly. The moisture content in the muffins was highest at 23.71 ± 0.79% in the 10% XanFlax treatment and lowest at 22.06 ± 0.30% in the 40% XanFlax treatment. The muffins enriched with 5% XanFlax had an average height of 5.35 cm and volume of 131.33 mL, surpassing the results for the muffins made with other formulas (p < 0.05). Additionally, the cohesiveness and gumminess of the muffins tended to increase with the addition of XanFlax. The most favorable attributes, namely the appearance, flavor, taste, texture, and overall acceptance, were consistently associated with the 5% and 10% XanFlax treatments (p < 0.05). This study marks the first time a standardized flaxseed gum product, XanFlax, has been described in a functional baking application.

3.
Foods ; 12(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37761100

RESUMO

The demand for sustainable and functional plant-based products is on the rise. Plant proteins and polysaccharides often provide emulsification and stabilization properties to food and food ingredients. Recently, chickpea cooking water, also known as aquafaba, has gained popularity as a substitute for egg whites in sauces, food foams, and baked goods due to its foaming and emulsifying capacities. This study presents a modified eco-friendly process to obtain process water from faba beans and isolate and characterize the foam-inducing components. The isolated material exhibits similar functional properties, such as foaming capacity, to aquafaba obtained by cooking pulses. To isolate the foam-inducing component, the faba bean process water was mixed with anhydrous ethanol, and a precipitated fraction was obtained. The precipitate was easily dissolved, and solutions prepared with the alcohol precipitate retained the foaming capacity of the original extract. Enzymatic treatment with α-amylase or protease resulted in reduced foaming capacity, indicating that both protein and carbohydrates contribute to the foaming capacity. The dried precipitate was found to be 23% protein (consisting of vicilin, α-legumin, and ß-legumin) and 77% carbohydrate (amylose). Future investigations into the chemical structure of this foam-inducing agent can inform the development of foaming agents through synthetic or enzymatic routes. Overall, this study provides a potential alternative to aquafaba and highlights the importance of exploring plant-based sources for functional ingredients in the food industry.

4.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175910

RESUMO

With the increasing accessibility of cannabis (Cannabis sativa L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.


Assuntos
Cannabis , Big Data
5.
Crit Rev Food Sci Nutr ; 63(29): 9843-9858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532015

RESUMO

Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.


Assuntos
Linho , Proteínas HMGA , Hiperlipidemias , Lignanas , Animais , Humanos , Linho/metabolismo , Lipídeos , Triglicerídeos/metabolismo , Colesterol/metabolismo , Polímeros/metabolismo , Proteínas HMGA/metabolismo , Mamíferos/metabolismo
6.
Foods ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496568

RESUMO

Flaxseed (Linum usitatissimum L.) is gaining popularity as a superfood due to its health-promoting properties. Mature flax grain includes an array of biologically active cyclic peptides or linusorbs (LOs, also known as cyclolinopeptides) that are synthesized from three or more ribosome-derived precursors. Two flaxseed orbitides, [1-9-NαC]-linusorb B3 and [1-9-NαC]-linusorb B2, suppress immunity, induce apoptosis in a cell line derived from human epithelial cancer cells (Calu-3), and inhibit T-cell proliferation, but the mechanism of LO action is unknown. LO-induced changes in gene expression in both nematode cultures and human cancer cell lines indicate that LOs promoted apoptosis. Specific evidence of LO bioactivity included: (1) distribution of LOs throughout the organism after flaxseed consumption; (2) induction of heat shock protein (HSP) 70A, an indicator of stress; (3) induction of apoptosis in Calu-3 cells; and (4) modulation of regulatory genes (determined by microarray analysis). In specific cancer cells, LOs induced apoptosis as well as HSPs in nematodes. The uptake of LOs from dietary sources indicates that these compounds might be suitable as delivery platforms for a variety of biologically active molecules for cancer therapy.

7.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36448088

RESUMO

Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.

8.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193986

RESUMO

Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.

9.
Foods ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35627075

RESUMO

The current study investigated the anti-neuroinflammatory effects and mechanisms of astragalin (Ast) and isoquercitrin (Que) isolated from chamchwi (Aster scaber Thunb.) in the lipopolysaccharide (LPS)-activated microglia and hippocampus of LPS induced mice. LPS induced increased cytotoxicity, nitric oxide (NO) production, antioxidant activity, reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) expression, the release of pro-inflammatory cytokines, protein kinase B phosphorylation, and mitogen-activated protein kinases (MAPK) phosphorylation in LPS-treated microglial cells. Intraperitoneal injection of LPS also induced neuroinflammatory effects in the murine hippocampus. Ast and Que significantly reduced LPS-induced production of NO, iNOS, and pro-inflammatory cytokines in the microglia and hippocampus of mice. Therefore, anti-inflammatory effects on MAPK signaling pathways mediate microglial cell and hippocampus inflammation. In LPS-activated microglia and hippocampus of LPS-induced mice, Ast or Que inhibited MAPK kinase phosphorylation by extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 signaling proteins. Ast and Que inhibited LPS-induced ROS generation in microglia and increased 1,1-diphenyl-2-picrylhydrazyl radical scavenging. In addition, LPS treatment increased the heme oxygenase-1 level, which was further elevated after Ast or Que treatments. Ast and Que exert anti-neuroinflammatory activity by down-regulation of MAPKs signaling pathways in LPS-activated microglia and hippocampus of mice.

10.
Foods ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159463

RESUMO

Lactic acid bacteria present in Kimchi, such as Leuconostoc mesenteroides (Lm), Latilactobacillus curvatus (Lc), and Lactiplantibacillus plantarum (Lp) produce extracellular vesicles (ECVs) that modulate immune responses. The ECVs of probiotic Kimchi bacteria are abbreviated as LmV, LcV, and LpV. Treatment of macrophages (RAW264.7) with ECVs (LmV, LcV, and LpV) increased the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6). Immunostimulatory effects exerted on the RAW264.7 cells were stronger after treatments with LmV and LcV than with LpV. Treatment of mice with LcV (1 mg/kg, orally) induced splenocyte proliferation and subsequent production of both NO and cytokines (INF-γ, TNF-α, IL-4, and IL-10). Furthermore, pre-treatment of macrophages and microglial cells with ECVs prior to LPS stimulation significantly attenuated the production of NO and pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Therefore, ECVs (LmV, LcV, and LpV) prevent inflammatory responses in the LPS-stimulated microglial cells by blocking the extracellular signal-regulated kinase (Erk) and p38 signaling pathways. These results showed that LmV, LcV, and LpV from Kimchi probiotic bacteria safely exert immunomodulatory effects.

11.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613979

RESUMO

Linosorbs (Los) are cyclic peptides from flaxseed oil composed of the LO mixture (LOMIX). The activity of LO has been reported as being anti-cancer and anti-inflammatory. However, the study of skin protection has still not proceeded. In particular, there are poorly understood mechanisms of melanogenesis to LO. Therefore, we investigated the anti-melanogenesis effects of LOMIX and LO, and its activity was examined in mouse melanoma cell lines. The treatment of LOMIX (50 and 100 µg/mL) and LO (6.25-50 µM) suppressed melanin secretion and synthesis, which were 3-fold increased, in a dose-dependent manner, up to 95%. In particular, [1-9-NαC]-linusorb B3 (LO1) and [1-9-NαC]-linusorb B2 (LO2) treatment (12.5 and 25 µM) highly suppressed the synthesis of melanin in B16F10 cell lines up to 90%, without toxicity. LOMIX and LOs decreased the 2- or 3-fold increased mRNA levels, including the microphthalmia-associated transcription factor (MITF), Tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2) at the highest concentration (25 µM). Moreover, the treatment of 25 µM LO1 and LO2 inhibited the expression of MITF and phosphorylation of upper regulatory proteins such as CREB and PKA. Taken together, these results suggested that LOMIX and its individual LO could inhibit melanin synthesis via downregulating the CREB-dependent signaling pathways, and it could be used for novel therapeutic materials in hyperpigmentation.


Assuntos
Linho , Melanoma Experimental , Melanoma , Animais , Camundongos , Melaninas , Monofenol Mono-Oxigenase/metabolismo , Linho/metabolismo , Peptídeos Cíclicos/farmacologia , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
12.
Foods ; 10(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34828870

RESUMO

Aquafaba (AQ) emulsification properties are determined by genetics and seed processing conditions. The physicochemical properties and hydration rates of chickpea (CDC Leader) as a control with proven emulsifying properties were recently reported. Here, we identify correlations between soybean (Backtae, Seoritae, and Jwinunikong) physical, chemical, and hydration properties as well as AQ yield from seed and functional (emulsion and foaming) properties. In addition, a total of 20 compounds were identified by NMR including alcohols (isopropanol, ethanol, methanol), organic acids (lactic acid, acetic acid, succinic acid, citric acid, and malic acid), sugars (glucose, galactose, arabinose, sucrose, raffinose, stachyose), essential nutrients (choline, phosphocholine), amino acids (alanine, glutamine), and polyphenols (resveratrol, glycitin). The process used in this study utilizes a soaking step to hydrate the seed of the selected Korean soybean cultivars. The product, AQ, is an oil emulsifier and foaming agent, which is suitable for use as an egg substitute with improved emulsion/foam formation properties when compared with a chickpea-based AQ.

13.
Foods ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34681336

RESUMO

Concerns regarding sustainability have prompted the search of value in the by-products of food manufacturing. Such is the case of the cooking water (CW) of chickpeas, which has shown its potential as a vegan egg white replacement. This study aimed to characterize and compare the CW from three novel legumes (black soybeans, BSB; yellow soybeans, YSB; and small black beans, SBB) obtained from the processing of Korean soybean foods, and the widely used CW from chickpeas (CH), with regard to total polyphenol, total carbohydrate, and protein contents, and further compare their foaming and emulsifying abilities and stabilities. Compositional analysis revealed that all the studied legumes possessed higher values than CH for all parameters. Furthermore, the CW from these legumes exhibited enhanced functional properties, particularly foaming capacity and stability. Taken together, our results suggest that the CW from BSB, YSB, and SBB, sourced from the manufacturing of legume food products, has the potential of being revalorized as a plant-based functional ingredient for vegan product development.

14.
Foods ; 10(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681480

RESUMO

The substitution of animal-based foods (meat, eggs, and milk) with plant-based products can increase the global food supply. Recently, pulse cooking water (a.k.a. aquafaba) was described as a cost-effective alternative to the egg in gluten-free, vegan cooking and baking applications. Aquafaba (AQ) forms stable edible foams and emulsions with functional properties that are like those produced by whole egg and egg white. However, the functional ingredients of AQ are usually discarded during food preparation. In this study, Korean-grown soy (ver. Backtae, Seoritae, and Jwinunikong) and chickpea were used to produce AQ. Two approaches were compared. In the first, seed was cooked at an elevated pressure without presoaking. In the second, seed was soaked, then, the soaking water was discarded, and soaked seed was cooked at an elevated pressure. Both approaches produced a useful emulsifier, but the latter, with presoaking, produced a superior product. This approach could lead to a process that involves a small number of efficient steps to recover an effective oil emulsifier, produces no waste, and is cost-effective. The AQ product from Backtae (yellow soybean) produced emulsions with better properties (90%) than AQ produced from other cultivars and produced more stable food oil emulsions. This study will potentially lead to gluten-free, vegan products for vegetarians and consumers with animal protein allergies. This is the first report of the efficient production of AQ, an egg white substitute derived from cooked soybean of known cultivars.

15.
Foods ; 10(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063536

RESUMO

With the increasing number of older adults, the elderly-friendly food market has been rapidly growing. The physicochemical and antioxidant properties of soymilk-based banana-blueberry-puree with and without flaxseed-based (XanFlax) and xanthan-gum-based (brand G) thickeners were compared as a potential senior food. Samples included a control, three treatments with XanFlax (1%, 3%, and 5%), and three treatments with brand G (1.35%, 2.7%, and 5.4%). The physicochemical (color, sugar, salinity, pH, viscosity, and hardness) and antioxidant properties [DPPH, ABTS, reducing power (RP), and total polyphenol content (TPC)] were compared. The chromaticity values (L*, a*, and b*) and pHs were similar among all treatments and the control, but the salinity of brand G showed statistical differences (p < 0.05). All samples met the Korean Industrial Standards for senior foods in terms of viscosity and hardness, while samples with brand G were harder and more viscous than those with XanFlax and the control (p < 0.001). XanFlax samples had greater ABTS radical scavenging activities than the control and brand G samples (p < 0.001). Although, the developed puree can be a possible senior food product without the addition of thickeners, XanFlax might be applied as a non-xanthan gum-based viscosity thickener with antioxidant functions for senior-friendly foods.

16.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322712

RESUMO

Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1-9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.


Assuntos
Actinas/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Óleo de Semente do Linho/química , Antineoplásicos Fitogênicos/isolamento & purificação , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Humanos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Polimerização/efeitos dos fármacos , Proto-Oncogene Mas , Fator de Transcrição STAT3/antagonistas & inibidores
17.
ACS Omega ; 5(21): 12486-12494, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548433

RESUMO

The liquified mash of milled grains from the Canadian wheat cultivar, AC Andrew, was fermented to determine whether α-glycerylphosphorylcholine (α-GPC) accumulated and whether the accumulation was dependent on fermentation-related factors. Fermentation was conducted at a temperature of 37 °C for 7 days (168 h) with samples collected every 24 h. The samples were analyzed using a proton nuclear magnetic resonance water suppression pulse sequence to allow the quantitation of ethanol, acetic acid, lactic acid, succinic acid, glycerol, phenethyl alcohol, betaine, and α-GPC. A Gompertz model was used to interpret fermentation kinetics for each analyte, and during fermentation, ethanol accumulated to a concentration of 72.1 g/L while α-GPC accumulated to a concentration of 1.68 g/L over 72 h. There were significant and positive correlations between the accumulation of α-GPC, ethanol, lactic acid, and glycerol and acetic acid production. Furthermore, there were no significant negative correlations between the productions of these compounds; hence, all the compounds accumulated during fermentation were produced simultaneously with no observed decrease measured in any compound. This indicates that α-GPC can be successfully produced industrially without any negative impact on ethanol or other useful compounds.

18.
Biomolecules ; 10(6)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512905

RESUMO

Although flax (Linum usitatissimum L.) has long been used as Ayurvedic medicine, its anti-inflammatory role is still unclear. Therefore, we aimed to investigate the anti-inflammatory role of a linusorb mixture (LOMIX) recovered from flaxseed oil. Effects of LOMIX on inflammation and its mechanism of action were examined using several in vitro assays (i.e., NO production, real-time PCR analysis, luciferase-reporter assay, Western blot analysis, and kinase assay) and in vivo analysis with animal inflammation models as well as acute toxicity test. Results: LOMIX inhibited NO production, cell shape change, and inflammatory gene expression in stimulated RAW264.7 cells through direct targeting of Src and Syk in the NF-κB pathway. In vivo study further showed that LOMIX alleviated symptoms of gastritis, colitis, and hepatitis in murine model systems. In accordance with in vitro results, the in vivo anti-inflammatory effects were mediated by inhibition of Src and Syk. LOMIX was neither cytotoxic nor did it cause acute toxicity in mice. In addition, it was found that LOB3, LOB2, and LOA2 are active components included in LOMIX, as assessed by NO assay. These in vitro and in vivo results suggest that LOMIX exerts an anti-inflammatory effect by inhibiting the inflammatory responses of macrophages and ameliorating symptoms of inflammatory diseases without acute toxicity and is a promising anti-inflammatory medication for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Linho/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
19.
Foods ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466206

RESUMO

Flaxseed gum (FG) is a by-product of flax (Linum usitatissimum L.) meal production that is useful as a food thickener, emulsifier, and foaming agent. FG is typically recovered by hot-water extraction from flaxseed hull or whole seed. However, FG includes complex polymer structures that contain bioactive compounds. Therefore, extraction temperature can play an important role in determining its functional properties, solution appearance, and solution stability during storage. These characteristics of FG, including FG quality, determine its commercial value and utility. In this study, FG solution functional properties and storage stability were investigated for solutions prepared at 70 and 98 °C. Solutions of FG prepared at 98 °C had lower initial viscosity than solutions extracted at 70 °C; though the viscosity of these solutions was more stable during storage. Solutions prepared by extraction at both tested temperatures exhibited similar tolerance to 0.1 mol/L salt addition and freeze-thaw cycles. Moreover, the higher extraction temperature produced a FG solution with superior foaming and emulsification properties, and these properties were more stable with storage. Foams and emulsions produced from FG extracted at higher temperatures also had better stability. FG extracted at 98 °C displayed improved stability and consistent viscosity, foamability, and emulsification properties in comparison to solutions prepared at 70 °C. Therefore, the FG solution extracted at 98 °C had more stable properties and, potentially, higher commercial value. This result indicates that FG performance as a commercial food additive can influence food product quality.

20.
Food Sci Nutr ; 8(4): 2102-2111, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328277

RESUMO

Whey protein isolate (WPI) was mixed with anionic flaxseed (Linum usitatissimum L.) gum (FG), and phase transition during coacervate formation was monitored. Effects of ionic strength and hydrogen bonding on coacervation of WPI-FG system and corresponding rheological properties were investigated. During coacervate formation, structural transitions were confirmed by both turbidimetry and confocal laser scanning microscopy. Increasing ionic strength with sodium chloride (50 mM) decreased optical density (600 nm) at pHmax. Correspondingly, pHc and pHϕ1 decreased from pH 5.4 to 4.8 and from 5.0 to 4.6, respectively, while pHϕ2 increased from pH 1.8 to 2.4. Sodium chloride suppressed biopolymer electrostatic interactions and reduced coacervate formation. Adding urea (100 mM) shifted pHϕ1, pHmax, and pHϕ2 from 4.8, 3.8, and 1.8 to 5.0, 4.0, and 2.2, respectively, while pHc was unaffected. Optical density (600 nm) at pHmax (0.536) was lower than that of control in the absence of urea (0.617). This confirmed the role of hydrogen bonding during coacervate formation in the biopolymer system composed of WPI and FG. Dynamic shear behavior and viscoelasticity of collected coacervates were measured, and both shear-thinning behavior and gel-like properties were observed. Addition of sodium chloride and urea reduced ionic strength and hydrogen bonding, resulting in decreased WPI-FG coacervate dynamic viscosity and viscoelasticity. The disturbed charge balance contributed to a loosely packed structure of coacervates which were less affected by altered hydrogen bonding. Findings obtained here will help to predict flaxseed gum behavior in protein-based foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA